4.1 Vector Spaces IR 2 and IR3

- · Watch video "linear combinations, span, ..." (linked)
- · Watch video "Linear transformations ..." (linked) (both by Youtube channel 3Blue 1 Brown)

<u>Set notation</u> { (generic element) () (specific conditions) } often specify "pool/universe" f"in" such that" $f(x) \in \mathbb{R} : x > 0 = (0, \infty)$ narrow down "pool" $\{(x,y) \in \mathbb{R}^2 : x>0, y<0\} = "4^{th} \text{ quadrant}"$

 $\{\begin{bmatrix} x \\ y \end{bmatrix} : x \in \mathbb{R}, y = 0\} = \{\begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R}\}$ "x axis"

· Sets discard duplicate elements

Linear combination: a weighted sum of vectors.

 $\underline{2x}$: $2\underline{u} - 3\underline{v}$, $\underline{3}\underline{u} + 5\underline{v} + \pi \cdot \underline{w}$, ...

<u>Span</u>: <u>set</u> of all linear combinations: span $\{u,v\} = \{au + bv : a,b \in R\}$

- span $\{[i]\} = \{a[i] : a \in \mathbb{R}\} = (line y = x)$
- span $\{\hat{i},\hat{j}\}=\mathbb{R}^2$ (all points/vectors covered)
- span $\{\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}\} = \{a\begin{bmatrix} 1\\1 \end{bmatrix} + b\begin{bmatrix} -1\\1 \end{bmatrix}; a_1b \in \mathbb{R}\} = \mathbb{R}^2$

• span{
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 $1 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ = $\left\{ a \begin{bmatrix} 3 \\ 3 \end{bmatrix} + b \begin{bmatrix} -1 \\ -2 \end{bmatrix} : a_1b \in \mathbb{R} \right\}$
= $\left\{ \begin{bmatrix} a \\ b \\ 3a - 2b \end{bmatrix} : x_1y \in \mathbb{R}, \ z = 3x - 2y \right\}$
= $\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x_1y \in \mathbb{R}, \ z = 3x - 2y \right\}$

Def: if zu, y} "span" a set S, they are a "spanning set" for S.

 \cdot $\{\hat{i},\hat{j}\}$ is a spanning set for \mathbb{R}^2 , but not for \mathbb{R}^3

· {[:],[-:]} is a " " " for R2

Def: \underline{u} and \underline{v} are linearly dependent if $\underline{u} = c\underline{v}$ or $\underline{v} = c\underline{u}$ (or both).

If not, they are line independent " $\{\underline{u},\underline{v}\}$ is a line independent set"

Def: 3 or more vectors are <u>lin</u>. <u>dep</u>. if

some one can be made as a <u>lin</u>. <u>comb</u>. of
the others. If not, they are <u>lin</u>. indep.

(* alt: if one is in the span of the others)

Ex
$$u = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $v = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$, $w = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

Try to make $au + bv = w$:

Want $a \begin{bmatrix} -1 \\ 2 \end{bmatrix} + b \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

(Ax = b) $\rightarrow \begin{bmatrix} -1 \\ 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

Solve using (RREF) or (EF) $\cdots x = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$

So $\frac{1}{2}u + \frac{1}{2}v = w$, $w = \frac{1}{2}v =$

Def: (dndepence): Given $\underline{u}, \underline{v}, \underline{w}$, try to make lin. comb. $\underline{a}\underline{u} + \underline{b}\underline{v} + \underline{c}\underline{w} = \underline{\emptyset}$. Always possible with "trivial solution" $(a_1b_1c) = (0,0,0).$

- I) If that is the only lin.comb. making \emptyset , then $U_1 V_1 W$ are <u>lin.indep</u>.
- 2) If there are other combinations making Q, they are <u>lin</u>. <u>dep</u>.